Conjugated linoleic acid, or CLA, is a well-liked complement purported to enhance well being in a number of methods.
Many individuals imagine it helps you lose fats and construct muscle, decreases your danger of poor metabolic and cardiovascular well being, and will increase testosterone manufacturing, all with none adversarial unwanted side effects.
Many others, nonetheless, are leery of those claims. They imagine the advantages of CLA are primarily based on controvertible proof and that taking CLA comes with vital danger.
Who must you imagine?
Is CLA all professionals and no cons?
Is it actually protected and side-effect free?
Get an evidence-based reply on this article.
(Or in case you’d desire to skip all the scientific mumbo jumbo, and also you simply wish to know in case you ought to take CLA or a distinct complement to achieve your targets, take the Legion Supplement Finder Quiz, and in lower than a minute, you’ll know precisely what dietary supplements are best for you. Click here to check it out.)
What Is CLA?
CLA stands for conjugated linoleic acid and refers to a gaggle of naturally occurring fatty acids.
CLA is found primarily in the meat and dairy of ruminants corresponding to cows, goats, sheep, and buffalo, although the quantity can fluctuate depending on the animal’s weight loss plan, altitude, breed, and lactation age.
For instance, some proof reveals that the dairy produced by cows free to pasture contains as much as 500% extra CLA than cows fed a typical dairy cow weight loss plan.
Scientists also can synthesize CLA utilizing vegetable oils corresponding to sunflower and safflower oil.
There are 28 doable types of CLA.
All of those varieties share the identical chemical formulation, however the atoms in every are organized otherwise, giving them barely completely different properties.
Many of the CLA within the human weight loss plan (75-to-80%) comes from a kind referred to as cis-9, trans-11-CLA, or c9,t11.
What Is a CLA Complement?
CLA dietary supplements are dietary dietary supplements that sometimes contain equal quantities of c9,t11 and one other type of CLA known as trans-10, cis-12-CLA (t10,c12).
Individuals take CLA dietary supplements as a result of they imagine that CLA confers a number of well being advantages, together with decreased danger of diabetes and improved cardiovascular well being.
In health circles, the commonest purpose folks complement with CLA is to spice up fats burning, although some additionally imagine it enhances muscle progress, testosterone manufacturing, and athletic efficiency.
How Does CLA Work?
The commonest purpose folks take CLA is to spice up weight reduction. Whereas we don’t totally perceive how CLA impacts fats burning, some scientists believe it’s related to how CLA interacts with Peroxisome Proliferator activated Receptors (PPAR).
Research on rats reveals that CLA (notably c9,t11 and t10,c12) binds to PPARa, which in accordance with some researchers, could enhance fats burning.
There’s additionally evidence from a human research that t10,c12 inhibits PPARy, a receptor present in fats cells that will increase fats acquire. That mentioned, other research on human cells reveals that c9,t11 prompts PPARy, and thus has the other impact.
Analysis on human cells additionally means that CLA suppresses or inhibits enzymes that contribute to fats acquire, corresponding to lipoprotein lipase and acetyl-CoA carboxylase. Likewise, animal studies present that CLA will increase ranges of enzymes that increase power expenditure, corresponding to carnitine palmitoyltransferase-1 and acyl-CoA oxidase.
Moreover, studies show that CLA interacts with the enzyme fatty acid synthase (FAS), although it’s not but clear what impact this has on physique fats. As an example, some research present it will increase fats burning, others that it has no impact, and nonetheless others that it will increase fats acquire.
What Does CLA Do?
Complement sellers declare that CLA advantages your well being in a number of methods, together with aiding weight reduction, boosting muscle progress, growing insulin sensitivity, enhancing athletic efficiency, and enhancing cardiovascular well being.
Are these claims legitimate, although? Right here’s what science says.
CLA and Weight Loss
Many individuals take CLA for weight reduction. Nonetheless, the proof that it’s efficient on this regard is weak.
Studies involving mice regularly show that CLA considerably boosts fats burning, decreases urge for food, and prevents fats storage, however scientists seldom report related leads to human research, with most showing CLA has no effects on fats loss in people.
The outcomes are underwhelming within the few research exhibiting CLA will increase fats loss in people, too.
For instance, in a single study printed within the journal Vitamins, individuals who supplemented with CLA twice each day for 12 weeks misplaced simply ~1.5 kilos of fats. In one other study by scientists on the College of Barcelona, obese individuals who took CLA for 12 weeks misplaced solely ~1.3 kilos.
Maybe probably the most “dramatic” weight reduction seen in a CLA research comes from research carried out by scientists on the Max Rubner Institut. On this research, researchers discovered that 85 overweight males (~75% of whom had metabolic syndrome) who took CLA for 4 weeks misplaced ~2.5 kilos of fats.
Other studies present that CLA’s weight-loss results are extremely unpredictable. As an example, one study printed in The American Journal of Scientific Diet confirmed that some individuals who took CLA for six months misplaced as a lot as ~6.8 kilos of fats, whereas others gained ~4.2 kilos.
Furthermore, CLA isn’t effective at stopping weight regain after weight-reduction plan, nor does it help you eat much less.
Total, most knowledge reveals that CLA is a dud. Outcomes from the few research that counsel in any other case present that CLA’s results are unreliable, inconsistent, and sometimes inconsequential. As such, there’s little purpose so as to add CLA to your fat-loss complement stack.
CLA and Muscle Development
Many individuals imagine that CLA boosts muscle progress, but most research shows this isn’t the case.
The few research that disagree are usually inconsistent, too.
For instance, scientists at Rowett Research Institute discovered that younger overweight males who took CLA and fish oil for 12 weeks elevated muscle mass by 2.4%, although younger lean males and older overweight and lean males noticed no profit.
Researchers on the University of North Carolina discovered that overweight individuals who took 6.4 grams of CLA (a big dose) each day for 12 weeks gained ~1.3 kilos of muscle in 12 weeks. Those that took 3.2 grams of CLA each day noticed no profit.
Scientists on the Scandinavian Clinical Research AS discovered that obese individuals who took CLA for one 12 months elevated their muscle mass by a mean of 1.8%. Importantly, this consequence wasn’t constant amongst everybody, with some shedding as a lot as 2.5% of their muscle mass.
The one different study price mentioning was printed within the Worldwide Journal of Weight problems and Associated Metabolic Issues and located that individuals who took CLA for 13 weeks whereas regaining weight after following a really low-calorie weight loss plan regained extra weight as muscle than those that took a placebo (12-to-13.7% vs. 8.6-to-9.1%, respectively). Taking CLA didn’t assist these folks preserve a decrease physique weight over time, although.
Some folks additionally imagine that CLA can improve muscle progress by boosting testosterone ranges.
Whereas research on human cells discovered CLA might be able to enhance “T” manufacturing, the outcomes weren’t replicated when scientists repeated the research in residing people.
In a single animal study, scientists discovered that injecting mice with a mushroom extract containing excessive c9,t11 ranges could forestall the enzyme aromatase from changing testosterone to estrogen. That mentioned, the mushroom extract contained different compounds that might have been answerable for the consequence, so it’s not possible to say whether or not the c9,t11 contributed. It’s additionally not possible to know whether or not we’d see related results in people.
Proof that CLA positively influences muscle progress is missing, and any proof in help is inconsistent. Thus, it’s cheap to conclude that CLA is ineffective at boosting muscle progress.
CLA and Insulin Sensitivity
Insulin sensitivity refers to how delicate your physique is to the consequences of insulin.
People who find themselves delicate to insulin require much less insulin to “shuttle” glucose (blood sugar) from their blood to their cells and take away glucose from their blood faster. The extra immune to insulin you grow to be, the more serious your metabolic well being and the upper your danger of sort 2 diabetes.
Whereas some animal studies present that c9,t11 will increase insulin sensitivity, other research shows that t10,c12 causes irritation that forestalls glucose and fatty acids from getting into cells, growing insulin resistance.
Human research on how CLA impacts insulin sensitivity are inconsistent.
As an example, in a single study carried out by scientists on the College of Guelph, 10 males took 3.2 grams of CLA each day. Six skilled a rise in insulin sensitivity, 2 skilled a lower, and the remaining 2 skilled no change.
In one other study printed in Utilized Physiology, Diet, and Metabolism, researchers discovered that out of 9 individuals who took CLA each day, 3 elevated insulin sensitivity by 9-to-13% and 6 decreased insulin sensitivity by 9-to-79%.
Most other studies show that CLA has little impact on insulin sensitivity.
Given the inconsistent outcomes relating to CLA’s impact on insulin sensitivity and its potential to extend insulin resistance, it’s wise to keep away from supplementing with CLA till extra human analysis reveals it’s protected to take action.
CLA and Athletic Efficiency
Research CLA’s impact on athletic efficiency are inconsistent and unpredictable. Some show that CLA has no impact on endurance, energy, and power, and others report that CLA could increase athletic efficiency to a small however vital diploma.
Moreover, one study reveals that CLA will increase bench press power however not leg press power in males however doesn’t enhance ladies’s efficiency on both train.
The present proof is simply too inconsistent to attract any agency conclusion about whether or not CLA improves athletic efficiency. Till extra human trials illustrate a profit, it’s in all probability not price investing in a CLA complement to spice up athletic efficiency.
CLA and Cardiovascular Well being
Research investigating CLA’s impact on cardiovascular well being are so numerous that they’re tough to research.
As an example, some animal studies present that CLA could defend in opposition to heart problems (CVD) by boosting arterial well being, enhancing levels of cholesterol, and decreasing oxidative stress.
Then again, human research how CLA impacts levels of cholesterol are conflicting, with some showing CLA improves ldl cholesterol, others showing CLA doesn’t alter levels of cholesterol, and still others suggesting CLA has a detrimental impact on ldl cholesterol.
Furthermore, research suggests CLA increases oxidative stress and ranges of blood markers corresponding to c-reactive protein, each of that are related to increased CVD danger. Regardless of this, research reveals that taking CLA doesn’t enhance your likelihood of creating CVD.
With such discordant outcomes, it’s not possible to attract agency conclusions about how CLA impacts cardiovascular well being. On condition that some analysis suggests CLA could also be detrimental to cardiovascular well being, it’s in all probability wise to keep away from CLA dietary supplements till now we have extra proof they’re protected.
CLA: Facet Results
CLA doesn’t appear to be poisonous to people, even when folks take it for prolonged intervals.
Nonetheless, as we’ve already seen, CLA could decrease insulin sensitivity and impair cardiovascular well being. Furthermore, some animal analysis reveals that taking massive doses of CLA can cause elevated fats accumulation within the liver.
Thus, we’d like extra human analysis earlier than we could be positive CLA is protected.
FAQ #1: What’s CLA good for?
Emptying your pockets?
Jokes apart, there’s little proof that CLA aids weight reduction, boosts muscle progress, enhances athletic efficiency, or improves cardiovascular well being.
FAQ #2: How lengthy does it take for CLA to work?
It relies upon.
Some research present that folks see advantages (fats loss, for instance) inside weeks, others have to attend months or years, and nonetheless others by no means expertise any profit from taking CLA.
FAQ #3: What are CLA’s advantages and risks?
Whereas many individuals imagine taking CLA will help weight reduction, increase muscle progress, improve athletic efficiency, and enhance cardiovascular well being, few folks expertise these advantages.
Sadly, everybody who takes CLA is prone to experiencing adversarial unwanted side effects, most notably elevated insulin resistance and CVD danger.
+ Scientific References
- Banni, S. (2002). Conjugated linoleic acid metabolism. Current Opinion in Lipidology, 13(3), 261–266. https://doi.org/10.1097/00041433-200206000-00005
- Santercole, V., Mazzette, R., De Santis, E. P. L., Banni, S., Goonewardene, L., & Kramer, J. K. G. (2007). Total lipids of Sarda sheep meat that include the fatty acid and alkenyl composition and the CLA and trans-18:1 isomers. Lipids, 42(4), 361–382. https://doi.org/10.1007/S11745-006-3003-7
- Bölükbaşi, Ş. C. (2006). Effect of dietary conjugated linoleic acid (CLA) on broiler performance, serum lipoprotein content, muscle fatty acid composition and meat quality during refrigerated storage. British Poultry Science, 47(4), 470–476. https://doi.org/10.1080/00071660600827716
- McCrorie, T. A., Keaveney, E. M., Wallace, J. M. W., Binns, N., & Livingstone, M. B. E. (2011). Human health effects of conjugated linoleic acid from milk and supplements. Nutrition Research Reviews, 24(2), 206–227. https://doi.org/10.1017/S0954422411000114
- Sofi, F., Buccioni, A., Cesari, F., Gori, A. M., Minieri, S., Mannini, L., Casini, A., Gensini, G. F., Abbate, R., & Antongiovanni, M. (2010). Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD, 20(2), 117–124. https://doi.org/10.1016/J.NUMECD.2009.03.004
- Raff, M., Tholstrup, T., Basu, S., Nonboe, P., Sørensen, M. T., & Straarup, E. M. (2008). A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. The Journal of Nutrition, 138(3), 509–514. https://doi.org/10.1093/JN/138.3.509
- Dhiman, T. R., Nam, S. H., & Ure, A. L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical Reviews in Food Science and Nutrition, 45(6), 463–482. https://doi.org/10.1080/10408390591034463
- Parodi, P. (2003). Conjugated Linoleic Acid in Food. Advances in Conjugated Linoleic Acid Research. https://doi.org/10.1201/9781439822166.CH8
- Banni, S. (2002). Conjugated linoleic acid metabolism. Current Opinion in Lipidology, 13(3), 261–266. https://doi.org/10.1097/00041433-200206000-00005
- Pariza, M. W., Park, Y., & Cook, M. E. (2001). The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research, 40(4), 283–298. https://doi.org/10.1016/S0163-7827(01)00008-X
- Lee, Y. (2008). Isomer specificity of conjugated linoleic acid (CLA): 9E,11E-CLA. Nutrition Research and Practice, 2(4), 326. https://doi.org/10.4162/NRP.2008.2.4.326
- Lock, A. L., & Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids, 39(12), 1197–1206. https://doi.org/10.1007/S11745-004-1348-6
- Moya-Camarena, S. Y., Vanden Heuvel, J. P., & Belury, M. A. (1999). Conjugated linoleic acid activates peroxisome proliferator-activated receptor α and β subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley rats. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids, 1436(3), 331–342. https://doi.org/10.1016/S0005-2760(98)00121-0
- Nazare, J. A., de la Perrière, A. B., Bonnet, F., Desage, M., Peyrat, J., Maitrepierre, C., Louche-Pelissier, C., Bruzeau, J., Goudable, J., Lassel, T., Vidal, H., & Laville, M. (2007). Daily intake of conjugated linoleic acid-enriched yoghurts: effects on energy metabolism and adipose tissue gene expression in healthy subjects. The British Journal of Nutrition, 97(2), 273–280. https://doi.org/10.1017/S0007114507191911
- Evans, M., Park, Y., Pariza, M., Curtis, L., Kuebler, B., & McIntosh, M. (2001). Trans-10,cis-12 conjugated linoleic acid reduces triglyceride content while differentially affecting peroxisome proliferator activated receptor gamma2 and aP2 expression in 3T3-L1 preadipocytes. Lipids, 36(11), 1223–1232. https://doi.org/10.1007/S11745-001-0836-Z
- Brown, J. M., Halvorsen, Y. D., Lea-Currie, Y. R., Geigerman, C., & McIntosh, M. (2001). Trans-10, cis-12, but not cis-9, trans-11, conjugated linoleic acid attenuates lipogenesis in primary cultures of stromal vascular cells from human adipose tissue. The Journal of Nutrition, 131(9), 2316–2321. https://doi.org/10.1093/JN/131.9.2316
- Lau, D. S. Y., & Archer, M. C. (2010). The 10t,12c isomer of conjugated linoleic acid inhibits fatty acid synthase expression and enzyme activity in human breast, colon, and prostate cancer cells. Nutrition and Cancer, 62(1), 116–121. https://doi.org/10.1080/01635580903191536
- Zabala, A., Churruca, I., Fernández-Quintela, A., Rodríguez, V. M., Macarulla, M. T., Martínez, J. A., & Portillo, M. P. (2006). trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. The British Journal of Nutrition, 95(6), 1112–1119. https://doi.org/10.1079/BJN20061774
- Macarulla, M. T., Fernández-Quintela, A., Zabala, A., Navarro, V., Echevarría, E., Churruca, I., Rodríguez, V. M., & Portillo, M. P. (2005). Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. Nutrition (Burbank, Los Angeles County, Calif.), 21(4), 512–519. https://doi.org/10.1016/J.NUT.2004.07.011
- Pariza, M. W., Park, Y., & Cook, M. E. (2001). The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research, 40(4), 283–298. https://doi.org/10.1016/S0163-7827(01)00008-X
- Clément, L., Poirier, H., Niot, I., Bocher, V., Guerre-Millo, M., Krief, S., Staels, B., & Besnard, P. (2002). Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. Journal of Lipid Research, 43(9), 1400–1409. https://doi.org/10.1194/JLR.M20008-JLR200
- Miranda, J., Churruca, I., Fernández-Quintela, A., Rodríguez, V. M., MacArulla, M. T., Simón, E., & Portillo, M. P. (2009). Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters. The British Journal of Nutrition, 102(11), 1583–1589. https://doi.org/10.1017/S0007114509990912
- Lasa, A., Miranda, J., Churruca, I., Simón, E., Arias, N., Milagro, F., Martínez, J. A., & del Puy Portillo, M. (2011). The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3T3-L1 adipocytes. Nutricion Hospitalaria, 26(5), 997–1003. https://doi.org/10.1590/S0212-16112011000500012
- Andreoli, M. F., Gonzalez, M. A., Martinelli, M. I., Mocchiutti, N. O., & Bernal, C. A. (2009). Effects of dietary conjugated linoleic acid at high-fat levels on triacylglycerol regulation in mice. Nutrition (Burbank, Los Angeles County, Calif.), 25(4), 445–452. https://doi.org/10.1016/J.NUT.2008.10.015
- Ide, T. (2005). Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissue. Diabetes, 54(2), 412–423. https://doi.org/10.2337/DIABETES.54.2.412
- Miner, J. L., Cederberg, C. A., Nielsen, M. K., Chen, X., & Baile, C. A. (2001). Conjugated linoleic acid (CLA), body fat, and apoptosis. Obesity Research, 9(2), 129–134. https://doi.org/10.1038/OBY.2001.16
- West, D. B., Blohm, F. Y., Truett, A. A., & DeLany, J. P. (2000). Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. The Journal of Nutrition, 130(10), 2471–2477. https://doi.org/10.1093/JN/130.10.2471
- Evans, M., Lin, X., Odle, J., & McIntosh, M. (2002). Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. The Journal of Nutrition, 132(3), 450–455. https://doi.org/10.1093/JN/132.3.450
- Risérus, U., Vessby, B., Ärnlöv, J., & Basu, S. (2004). Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. The American Journal of Clinical Nutrition, 80(2), 279–283. https://doi.org/10.1093/AJCN/80.2.279
- Larsen, T. M., Toubro, S., Gudmundsen, O., & Astrup, A. (2006). Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. The American Journal of Clinical Nutrition, 83(3), 606–612. https://doi.org/10.1093/AJCN.83.3.606
- Lambert, E. V., Goedecke, J. H., Bluett, K., Heggie, K., Claassen, A., Rae, D. E., West, S., Dugas, J., Dugas, L., Meltzer, S., Charlton, K., & Mohede, I. (2007). Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals. The British Journal of Nutrition, 97(5), 1001–1011. https://doi.org/10.1017/S0007114507172822
- Joseph, S. V., Jacques, H., Plourde, M., Mitchell, P. L., McLeod, R. S., & Jones, P. J. H. (2011). Conjugated linoleic acid supplementation for 8 weeks does not affect body composition, lipid profile, or safety biomarkers in overweight, hyperlipidemic men. The Journal of Nutrition, 141(7), 1286–1291. https://doi.org/10.3945/JN.110.135087
- Wanders, A. J., Brouwer, I. A., Siebelink, E., & Katan, M. B. (2010). Effect of a high intake of conjugated linoleic acid on lipoprotein levels in healthy human subjects. PloS One, 5(2). https://doi.org/10.1371/JOURNAL.PONE.0009000
- Chen, S. C., Lin, Y. H., Huang, H. P., Hsu, W. L., Houng, J. Y., & Huang, C. K. (2012). Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition (Burbank, Los Angeles County, Calif.), 28(5), 559–565. https://doi.org/10.1016/J.NUT.2011.09.008
- Laso, N., Brugué, E., Vidal, J., Ros, E., Arnaiz, J. A., Carné, X., Vidal, S., Mas, S., Deulofeu, R., & Lafuente, A. (2007). Effects of milk supplementation with conjugated linoleic acid (isomers cis-9, trans-11 and trans-10, cis-12) on body composition and metabolic syndrome components. The British Journal of Nutrition, 98(4), 860–867. https://doi.org/10.1017/S0007114507750882
- Pfeuffer, M., Fielitz, K., Laue, C., Winkler, P., Rubin, D., Helwig, U., Giller, K., Kammann, J., Schwedhelm, E., Böger, R. H., Bub, A., Bell, D., & Schrezenmeir, J. (2011). CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. Journal of the American College of Nutrition, 30(1), 19–28. https://doi.org/10.1080/07315724.2011.10719940
- Racine, N. M., Watras, A. C., Carrel, A. L., Allen, D. B., McVean, J. J., Clark, R. R., O’Brien, A. R., O’Shea, M., Scott, C. E., & Schoeller, D. A. (2010). Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. The American Journal of Clinical Nutrition, 91(5), 1157–1164. https://doi.org/10.3945/AJCN.2009.28404
- Norris, L. E., Collene, A. L., Asp, M. L., Hsu, J. C., Liu, L. F., Richardson, J. R., Li, D., Bell, D., Osei, K., Jackson, R. D., & Belury, M. A. (2009). Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. The American Journal of Clinical Nutrition, 90(3), 468–476. https://doi.org/10.3945/AJCN.2008.27371
- Close, R. N., Schoeller, D. A., Watras, A. C., & Nora, E. H. (2007). Conjugated linoleic acid supplementation alters the 6-mo change in fat oxidation during sleep. The American Journal of Clinical Nutrition, 86(3), 797–804. https://doi.org/10.1093/AJCN/86.3.797
- Kamphuis, M. M. J. W., Lejeune, M. P. G. M., Saris, W. H. M., & Westerterp-Plantenga, M. S. (2003). Effect of conjugated linoleic acid supplementation after weight loss on appetite and food intake in overweight subjects. European Journal of Clinical Nutrition, 57(10), 1268–1274. https://doi.org/10.1038/SJ.EJCN.1601684
- Gaullier, J. M., Halse, J., Høye, K., Kristiansen, K., Fagertun, H., Vik, H., & Gudmundsen, O. (2005). Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. The Journal of Nutrition, 135(4), 778–784. https://doi.org/10.1093/JN/135.4.778
- Blankson, H., Stakkestad, J. A., Fagertun, H., Thom, E., Wadstein, J., & Gudmundsen, O. (2000). Conjugated linoleic acid reduces body fat mass in overweight and obese humans. The Journal of Nutrition, 130(12), 2943–2948. https://doi.org/10.1093/JN/130.12.2943
- Richard B Kreider, Maria P Ferreira, Michael Greenwood, Michael Wilson, & Anthony L Almada. (n.d.). Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers – PubMed. Retrieved December 14, 2022, from https://pubmed.ncbi.nlm.nih.gov/12173945/
- Sneddon, A. A., Tsofliou, F., Fyfe, C. L., Matheson, I., Jackson, D. M., Horgan, G., Winzell, M. S., Wahle, K. W. J., Ahren, B., & Williams, L. M. (2008). Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity (Silver Spring, Md.), 16(5), 1019–1024. https://doi.org/10.1038/OBY.2008.41
- Steck, S. E., Chalecki, A. M., Miller, P., Conway, J., Austin, G. L., Hardin, J. W., Albright, C. D., & Thuillier, P. (2007). Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. The Journal of Nutrition, 137(5), 1188–1193. https://doi.org/10.1093/JN/137.5.1188
- Gaullier, J. M., Halse, J., Høye, K., Kristiansen, K., Fagertun, H., Vik, H., & Gudmundsen, O. (2004). Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. The American Journal of Clinical Nutrition, 79(6), 1118–1125. https://doi.org/10.1093/AJCN/79.6.1118
- Kamphuis, M. M. J. W., Lejeune, M. P. G. M., Saris, W. H. M., & Westerterp-Plantenga, M. S. (2003). The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. International Journal of Obesity and Related Metabolic Disorders : Journal of the International Association for the Study of Obesity, 27(7), 840–847. https://doi.org/10.1038/SJ.IJO.0802304
- MacAluso, F., Morici, G., Catanese, P., Ardizzone, N. M., Gammazza, A. M., Bonsignore, G., Giudice, G. Lo, Stampone, T., Barone, R., Farina, F., & Di Felice, V. (2012). Effect of conjugated linoleic acid on testosterone levels in vitro and in vivo after an acute bout of resistance exercise. Journal of Strength and Conditioning Research, 26(6), 1667–1674. https://doi.org/10.1519/JSC.0B013E318231AB78
- Chen, S., Oh, S. R., Phung, S., Hur, G., Ye, J. J., Kwok, S. L., Shrode, G. E., Belury, M., Adams, L. S., & Williams, D. (2006). Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Research, 66(24), 12026–12034. https://doi.org/10.1158/0008-5472.CAN-06-2206
- Halade, G. V., Rahman, M. M., & Fernandes, G. (2010). Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice. The Journal of Nutritional Biochemistry, 21(4), 332–337. https://doi.org/10.1016/J.JNUTBIO.2009.01.006
- Halade, G. V., Rahman, M. M., & Fernandes, G. (2009). Effect of CLA isomers and their mixture on aging C57Bl/6J mice. European Journal of Nutrition, 48(7), 409–418. https://doi.org/10.1007/S00394-009-0029-7
- Chung, S., Brown, J. M., Provo, J. N., Hopkins, R., & McIntosh, M. K. (2005). Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. The Journal of Biological Chemistry, 280(46), 38445–38456. https://doi.org/10.1074/JBC.M508159200
- Brown, J. M., Boysen, M. S., Chung, S., Fabiyi, O., Morrison, R. F., Mandrup, S., & McIntosh, M. K. (2004). Conjugated linoleic acid induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. The Journal of Biological Chemistry, 279(25), 26735–26747. https://doi.org/10.1074/JBC.M401766200
- Brown, J. M., Boysen, M. S., Jensen, S. S., Morrison, R. F., Storkson, J., Lea-Currie, R., Pariza, M., Mandrup, S., & McIntosh, M. K. (2003). Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes. Journal of Lipid Research, 44(7), 1287–1300. https://doi.org/10.1194/JLR.M300001-JLR200
- S. Papaetis, G., Orphanidou, D., & N. Panagiotou, T. (2011). Thiazolidinediones and type 2 diabetes: from cellular targets to cardiovascular benefit. Current Drug Targets, 12(10), 1498–1512. https://doi.org/10.2174/138945011796818243
- Eyjolfson, V., Spriet, L. L., & Dyck, D. J. (2004). Conjugated linoleic acid improves insulin sensitivity in young, sedentary humans. Medicine and Science in Sports and Exercise, 36(5), 814–820. https://doi.org/10.1249/01.MSS.0000126391.42896.31
- Thrush, A. B., Chabowski, A., Heigenhauser, G. J., McBride, B. W., Or-Rashid, M., & Dyck, D. J. (2007). Conjugated linoleic acid increases skeletal muscle ceramide content and decreases insulin sensitivity in overweight, non-diabetic humans. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 32(3), 372–382. https://doi.org/10.1139/H06-116
- Watras, A. C., Buchholz, A. C., Close, R. N., Zhang, Z., & Schoeller, D. A. (2007). The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. International Journal of Obesity (2005), 31(3), 481–487. https://doi.org/10.1038/SJ.IJO.0803437
- Syvertsen, C., Halse, J., Høivik, H. O., Gaullier, J. M., Nurminiemi, M., Kristiansen, K., Einerhand, A., O’Shea, M., & Gudmundsen, O. (2007). The effect of 6 months supplementation with conjugated linoleic acid on insulin resistance in overweight and obese. International Journal of Obesity (2005), 31(7), 1148–1154. https://doi.org/10.1038/SJ.IJO.0803482
- Diaz, M. L., Watkins, B. A., Li, Y., Anderson, R. A., & Campbell, W. W. (2008). Chromium picolinate and conjugated linoleic acid do not synergistically influence diet- and exercise-induced changes in body composition and health indexes in overweight women. The Journal of Nutritional Biochemistry, 19(1), 61–68. https://doi.org/10.1016/J.JNUTBIO.2007.01.006
- Jenkins, N. D. M., Buckner, S. L., Baker, R. B., Bergstrom, H. C., Cochrane, K. C., Weir, J. P., Housh, T. J., & Cramer, J. T. (2014). Effects of 6 weeks of aerobic exercise combined with conjugated linoleic acid on the physical working capacity at fatigue threshold. Journal of Strength and Conditioning Research, 28(8), 2127–2135. https://doi.org/10.1519/JSC.0000000000000513
- Tarnopolsky, M. A., & Safdar, A. (2008). The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 33(1), 213–227. https://doi.org/10.1139/H07-142
- Cornish, S. M., Candow, D. G., Jantz, N. T., Chilibeck, P. D., Little, J. P., Forbes, S., Abeysekara, S., & Zello, G. A. (2009). Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. International Journal of Sport Nutrition and Exercise Metabolism, 19(1), 79–96. https://doi.org/10.1123/IJSNEM.19.1.79
- Pinkoski, C., Chilibeck, P. D., Candow, D. G., Esliger, D., Ewaschuk, J. B., Facci, M., Farthing, J. P., & Zello, G. A. (2006). The effects of conjugated linoleic acid supplementation during resistance training. Medicine and Science in Sports and Exercise, 38(2), 339–348. https://doi.org/10.1249/01.MSS.0000183860.42853.15
- Kritchevsky, D., Tepper, S. A., Wright, S., Czarnecki, S. K., Wilson, T. A., & Nicolosi, R. J. (2004). Conjugated linoleic acid isomer effects in atherosclerosis: growth and regression of lesions. Lipids, 39(7), 611–616. https://doi.org/10.1007/S11745-004-1273-8
- R J Nicolosi, E J Rogers, D Kritchevsky, J A Scimeca, & P J Huth. (n.d.). Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters – PubMed. Retrieved December 14, 2022, from https://pubmed.ncbi.nlm.nih.gov/9209699/
- McLeod, R. S., LeBlanc, A. M., Langille, M. A., Mitchell, P. L., & Currie, D. L. (2004). Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. The American Journal of Clinical Nutrition, 79(6 Suppl). https://doi.org/10.1093/AJCN/79.6.1169S
- Mougios, V., Matsakas, A., Petridou, A., Ring, S., Sagredos, A., Melissopoulou, A., Tsigilis, N., & Nikolaidis, M. (2001). Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. The Journal of Nutritional Biochemistry, 12(10), 585–594. https://doi.org/10.1016/S0955-2863(01)00177-2
- Moloney, F., Yeow, T. P., Mullen, A., Nolan, J. J., & Roche, H. M. (2004). Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. The American Journal of Clinical Nutrition, 80(4), 887–895. https://doi.org/10.1093/AJCN/80.4.887
- Noone, E. J., Roche, H. M., Nugent, A. P., & Gibney, M. J. (2002). The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. The British Journal of Nutrition, 88(3), 243–251. https://doi.org/10.1079/BJN2002615
- Petridou, A., Mougios, V., & Sagredos, A. (2003). Supplementation with CLA: isomer incorporation into serum lipids and effect on body fat of women. Lipids, 38(8), 805–811. https://doi.org/10.1007/S11745-003-1129-2
- Tricon, S., Burdge, G. C., Jones, E. L., Russell, J. J., El-Khazen, S., Moretti, E., Hall, W. L., Gerry, A. B., Leake, D. S., Grimble, R. F., Williams, C. M., Calder, P. C., & Yaqoob, P. (2006). Effects of dairy products naturally enriched with cis-9,trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. The American Journal of Clinical Nutrition, 83(4), 744–753. https://doi.org/10.1093/AJCN/83.4.744
- Nelson, G. J., Kelley, D. S., Bartolini, G., Schmidt, P. C., & Simon, V. (2001). The effect of conjugated linoleic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids, 36(3), 229–236. https://doi.org/10.1007/S11745-001-0712-X
- Sluijs, I., Plantinga, Y., De Roos, B., Mennen, L. I., & Bots, M. L. (2010). Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. The American Journal of Clinical Nutrition, 91(1), 175–183. https://doi.org/10.3945/AJCN.2009.28192
- Whigham, L. D., O’Shea, M., Mohede, I. C. M., Walaski, H. P., & Atkinson, R. L. (2004). Safety profile of conjugated linoleic acid in a 12-month trial in obese humans. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 42(10), 1701–1709. https://doi.org/10.1016/J.FCT.2004.06.008
- Tricon, S., Burdge, G. C., Kew, S., Banerjee, T., Russell, J. J., Jones, E. L., Grimble, R. F., Williams, C. M., Yaqoob, P., & Calder, P. C. (2004). Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. The American Journal of Clinical Nutrition, 80(3), 614–620. https://doi.org/10.1093/AJCN/80.3.614
- Risérus, U., Basu, S., Jovinge, S., Fredrikson, G. N., Ärnlöv, J., & Vessby, B. (2002). Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation, 106(15), 1925–1929. https://doi.org/10.1161/01.CIR.0000033589.15413.48
- Smedman, A., Basu, S., Jovinge, S., Fredrikson, G. N., & Vessby, B. (2005). Conjugated linoleic acid increased C-reactive protein in human subjects. The British Journal of Nutrition, 94(5), 791–795. https://doi.org/10.1079/BJN20041419
- Tholstrup, T., Raff, M., Straarup, E. M., Lund, P., Basu, S., & Bruun, J. M. (2008). An oil mixture with trans-10, cis-12 conjugated linoleic acid increases markers of inflammation and in vivo lipid peroxidation compared with cis-9, trans-11 conjugated linoleic acid in postmenopausal women. The Journal of Nutrition, 138(8), 1445–1451. https://doi.org/10.1093/JN/138.8.1445
- Benjamin, S., Prakasan, P., Sreedharan, S., Wright, A. D. G., & Spener, F. (2015). Pros and cons of CLA consumption: an insight from clinical evidences. Nutrition & Metabolism, 12(1), 4. https://doi.org/10.1186/1743-7075-12-4
- Jaudszus, A., Moeckel, P., Hamelmann, E., & Jahreis, G. (2010). Trans-10,cis-12-CLA-caused lipodystrophy is associated with profound changes of fatty acid profiles of liver, white adipose tissue and erythrocytes in mice: possible link to tissue-specific alterations of fatty acid desaturation. Annals of Nutrition & Metabolism, 57(2), 103–111. https://doi.org/10.1159/000319877